B.Sc. Physics

PROGRAMME OUTCOMES OF B.SC.

- Apply the broaden and in-depth knowledge of science and computing to analyse, think creatively and generate solutions to face the global challenges.
- **F**oster intellectual curiosity, critical thinking and logical reasoning.
- Adapt to different roles and responsibilities and develop leadership qualities in multicultural working environment by relating to diversity and ethical practices.
- > Update the techniques and acquire skills to develop systems and methods to solve current problems.

٠.

No	Upon completion of the programme the Students will be able to	PSO NO
1	Understand the core theories and principles of physics which include mechanics, thermodynamics, electronics and material science.	PSO-1
2	Develop clear and extensive comprehensive of fundamental physics and wide experience of diverse applications related to physical phenomena.	PSO-2
3	Apply the knowledge of physical concepts and phenomenon.	PSO-3
4	Apply the critical reasoning and computing skills to analyze and solve problems in physics.	PSO-4
5	Analyze the observed experimental data and relate the results with theoretical expectations.	PSO-5
6	Understand the impact of physics on the society and the world around.	PSO-6
7	Communicate the scientific information in oral and written formats. So that they can think critically and work independently in the present scenario.	PSO-7

PROGRAMME SPECIFIC OUTCOME-B.SC

	Subject code	:PC1731	
Number of hours per week	No of credits	Total number of hours	Marks
4	4	60	100

Semester :III
Name of the Course :ELECTRICITY AND MAGNETISM
Subject code :PC1731

Objectives: 1.To provide knowledge on the basic concept of electric and magnetic fields.

2. To understand the laws and theorems in electromagnetism and their application.

СО	Upon completion of this course the students will be able to :	PSO	CL
CO-1	Explain the concept and features of the electrostatic force (Coulomb force), magnetic field, flux, force, the electric force field, Gauss's Law and its application(charged sphere, cylinder, plane sheet)	PSO-1	U
CO-2	Analyse the presence of electric potential and potential difference, within a framework of distributed symmetric charge distributions	PSO-2	An
CO-3	Solve problems associated with the effect of uniform magnetic fields on moving charges and current-carrying wires, loops and the magnetic	PSO-3	C
CO -4	Understand the laws of electromagnetic induction as applied to self and mutual induction.	PSO-3	U
CO-5	Analyse AC circuit behavior (LR,CR and LCR)	PSO-5	An
CO -6	Apply kirchoff's laws and network theorems to electrical circuits .	PSO-2	А
CO-7	Determine magnetic dipole moment using magnetometers and AC bridges, and Ballistic galvanometer to do electrical measurements	PSO-5	E

Credit:4

	Ci cuit.	-				Ŧ	T	
Unit	Modul	e	Topics	Lectu e	r	Learning	Pedagogy	Assessment/ Evaluation
Ι	Electric				-			
	1	Tor	ctric dipole, Force and que, Potential energy of a ble in a uniform electric l	3	basic featu	nderstand the c concepts and ires related electric field	Illustration and lecture	Evaluatio n through: quiz,
	2		es of force – Flux of the electric I, Gauss law	2		erive Gauss in terms of cric field	PPT Illustration Theoretical	short questions
	3	chai cyli	ctric field due to a uniformly ged sphere, infinite ndrical charge, infinite plane et of charge	3	Law diffe	pply Gauss's for rrent igurations	Illustration Theoretica I derivation	Multiple choice, questions
П	Electrost	tatic	Potential		-			
	1	field	servative nature of electrostatic l, Potential difference, Electric ential as line integral of electric	2	the	nderstand origin of rostatic field	PPT Illustration,	Evaluatio n through:

		field		between potential, its line integral and potential	formulation	short test
	2	Potential at a point due to a point charge, uniformly charged conducting sphere, Electric potential energy	3	To extend the idea of potential to calculate potential of different	Lecture , Illustration, Theoritical	Assignment on applications.
	3	Electrical Images - Capacity of a condenser, spherical condenser and Parallel plate condenser	3	To understand the concept of electrical images and evaluate the capacitance of various condensers	Lecture , Illustration, Theoretical formulation	Formative assessment(I &II)
Ш	Magneti	cfield and Electromagnetic induction	1	·		
	1	Magnetic field and Definition B , of Magnetic force on a particle and Magnetic field lines, Magnetic force on a current carrying wire, Torque on a current loop	3	To understand the basic concepts and features related to Magnetic fiet, the force	Lecture , Illustration, Theoretical formulation	Evaluatio n through: quiz, short questions
	2	Faradays law of electromagnetic induction, Lenz law and Explanation of Faradays law	2	To apply laws of electromagnetic induction and be able to calculate self- and mutual inductance.	Lecture , Illustration,	Multiple choice,
	3	Coupling of two coils with flux linkage and Magnetic energy stored in the inductance	3	To evaluate the effect of coupling two inductances and the magnetic energy stored	Illustration, Theoretical formulation	questions , Deriving theoretica
IV	Electric	al Circuits and Network theorems				
	1	Kirchoff's laws,Series circuit – AC through an L-R circuit, C-R circuit	3	To apply Kirchoff's laws to ac circuit theory including L-R circuit and C-R circuit	Lecture, Demonstratio n, theoretical	Evaluatio n through: quiz, short
	2	LCR in series resonance circuit- Vector diagram method, The series circuit at resonance, The parallel resonance circuit	3	To analyse the behaviour of series and parallel resonance circuit and arrive at the condition for	Lecture, Demonstratio n, theoretical formulation	questions Multiple choice, questions, Deriving
	3	Network theorems, Ideal constants, Thevenins theorem, Norton's theorem - Maximum power transfer theorem	3	Understand the theorems which decide the distribution of currents and potentials in complex	Lecture , Demonstratio n , theoretical	theoretical formulae Formative assessment (II&III)
V	Floctric	al Measurements				

1	AC bridges, The Desauty bridge , Anderson's L-C bridge, Owen's L-C bridge	4	To understand the distribution of currents in C-R and L-C, AC	Illustration, Theoretical	Evaluatio n through: quiz,
2	Moving coil gavanometer, Correction for damping in Ballistic galvanometers, Measurement of charge sensitivity of a ballistic galvanometer,	4	To understand the theory, working and application of Moving coil gavanometer for	Lecture, Demonstratio n, theoretical formulation	Deriving theoretical formulas Formative

Course instructor: Dr. Fernando Loretta Head of the Department:Dr.S.Mary Delphine

Semester: III Name of the Course: Non -Conventional energy sources Subject Code: PC1732

Number of hours per week	No of credits	Total number of hours	Marks
4	4	60	100

Objectives

1. To provide knowledge on various alternative sources of energy.

2. To create awareness about the non-conventional energy sources which will solve the energy crisis.

СО	Upon completion of this course, students will be able to:	PSO	CL
CO-1	Utilize the solar energy for generating the electric power	PSO-6	Ар
CO-2	Apply the solar energy in various sectors (industry, agriculture and domestic purposes)	PSO-4	Ap
CO-3	Explain the basic principles of wind energy conversion, its components and its classification	PSO-1	U
CO-4	Explain the various Biomass conversion Processes	PSO-1	U
CO-5	Elaborate the geothermal energy resources and chemical energy resources (fuel cells)	PSO-2	C
CO-6	Outline the extraction of useful energy from Earth, Ocean, Wind and Sun.	PSO-2	U
CO-7	Design the various pollution-free energy resources(solar heater, solar cooker, Wind mill etc)	PSO-6	С
CO-8	Solve the present and future energy crisis	PSO-7	С

Teaching Plan
Total contact hours: 60 (Including lectures, assignments and Tests)

Uni t	Mod	dule	Topics	Lect e	ur	Learning outcome	Pedagogy	Assessment	
I		Energ		C		outcome	I cuagogy	<u>-</u> -	
	l wat elec gen		troduction-Solar ater heating - Solar ectric power eneration-Solar poto voltaics			e to utilize solar energy generating ver	Lecture discussion		
	2	Agri	culture and strial process heat	2	sola	ly the r energy in ous sectors	Lecture	Quiz, Formative Assessment	
	3	Solar	distillation – cooker - Solar houses	3		ign the ous Pollution energy	Lecture with ppt, Group	I Multiple Choice Questions	
	4		production ydrogen	Apply the solar energy I for the		Lecture			
П	Wind energy								
	1	Basic principles of wind energy conversion - Nature of the wind- Power in the wind- Site selection		4	the func	lerstand lamental of d resource	Lecture , Group discussion		
	2	- Clas syste	components of WECS ssification of WEC ms - Advantages and vantages of WECS -	3	win its	lain the d energy, ponents	Lecture discussion	Short Test, Formative Assessment II	
	3	Wind - H mach	lenergy collectors orizontal axial lines	2		line action of d energy	Lecture discussion		
Ш	Bio-E	nergy		.					
	1	tech	mass- Bio conversion nologies-Wet cesses- Dry processes-	4	the func of con	lerstand lamentals Biomass version cesses &	Lecture discussion	Short Test, Formative	
	2 gen Fac		tosynthesis-Bio gas eration- tors affecting ligestion or	2	Bio	lain the gas eration and	Lecture discussion	Assessment I, II	

	3 Geo th	Classification of Bio gas plants - Constructional details of digesters ermal Energy and Chemical	3 Energy	Aware from a technical point of view of Bio gas plants	Lecture, Illustration	
					ľ	
		Nature of geo thermal fields – Geo thermal sources - Hydrothermal resources - Vapour dominated systems - Liquid dominated systems Geo pressured	4	Outline the technologies that are used to harness the power of Geo thermal energy	Lecture discussion	
	• 2	Fuel cells - Design and principle of operation of a fuel cell – Types of fuel cell – Advantages and disadvantages of fuel cells	- 2	Identify the types of practical fuel cells, their operational principles & basic electrochemistry for understanding the	Lecture discussion	Short Test, Formative Assessment II, III
	3	Conversion efficiency of fuel cells – Types of electrodes – Work output and emf of fuel cells – Applications of fuel cells	3	Explore the methods to calculate fuel cell open circuit voltage, fuel cell loss & efficiency	Lecture discussion	
V	Energy	<u>y from the ocean and Hydrog</u>	en ener	gy	- 18	
	1	Introduction-Ocean thermal electric conversion(OTEC) - Methods of ocean thermal electric power generation- Open cycle OTEC system- Closed or Anderson OTEC cycle-	3	Understand about the OTEC and the various methods of power generation from ocean energy	Lecture discussion	Short Test, Formative Assessment III
	2	Heat exchangers- Bio fouling- Site selection- Energy utilization-Hybrid cycle-Prospects of ocean thermal energy conversion in India-	4	Explain the ocean energy utilization for various sectors	Lecture discussion	Assessment III

3 Hydrogen ener Hydrogen production- Electrolytic pro hydrogen-The	luction of	Able to account for the most central principles of Hydrogen production	Group discussion	
--	------------	--	---------------------	--

Course instructor: M. Abila Jeba Queen

Head of the Department:Dr.S.Mary Delphine

Semester : V

Name of the Course : Elements of Modern

Physics Subject cod No of hours per week	e : PC1751 No. of credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To provide insight into wave- particle duality and its consequence. **2.**To apply skill related to principle and concepts of modern physics.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Explain the theories and experiment related to particle and wave nature of light.	PSO-1	U
CO- 2	Identify particle nature experiments (photoelectric effect, planks law, Compton effect, photoelectric effect) and wave nature experiments(Thomson experiment, Davision Germer experiment).	PSO-2	Ар
CO- 3	Define uncertainty principle.	PSO-2	R
CO -4	Analyse various models of atomic spectra.	PSO-5	An
CO- 5	Solve Schrodinger equation in different dimensional stages.	PSO-4	С
CO- 6	Estimate Lorentz transformation for length contraction ,time dilation.	PSO-5	Е

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment /Evaluation
Ι	Particle N	Nature of Radiation				

1	Introduction , Spectral distribution of	2	То	PPT,	Quiz test,
	blackbody radiation, Quantum hypothesis of		summaris	Lecture	Formative
	Planck		e the	method	assessment
			quantum		(I)
			theories		
2.	Planck's law of radiation, Photoelectric	5	То	PPT,	
	Effect,		explain		
	Photoemission characteristics Failure of		particle		
	electromagnetic wave theory, Einstein's		nature		

		Photoelectric equation		theories		
	3.	Millikan's verification of Einstein's equation, Continuous X-ray Spectrum, Compton effect	4	To explain particle nature experime nts	Lecture	
	4.	Energy of scattered radiation and recoil electron, Compton scattering vs Photoelectric effect,Pair Production, Particle or Waves.	4	To compare Compton and Photoelec tric effect	PPT, Lecture, Group discussio n	
Π	Wave Na	ture of Particles				
	1	Introduction , De Broglie waves and wavelength, Wavelength vs Voltage	3	To explain wave nature theories	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Davisson –Germer experiment, Experiments of G.P Thomson, Frisch and stern's method	4	To explain wave nature experime nts	Lecture method	
	3.	Standing electron waves in a circular orbit, Heisenberg's uncertainty principle	4	To Define uncertain ty principle	PPT, Lecture, Group discussio n	
	4.	Uncertainty relation, Uncertainty principle and concept of Bohr orbits, Derivation of the uncertainty principle, Phase velocity and group velocity, Phase and group velocities of matter waves.	4	To Derive uncertain ty relation	PPT, Lecture, Group discussio n	
III	Atomic s					
		Introduction ,Spectra of H atom,Orbital magnetic moment of H atom, Larmor precession	3	To analyse various models of atomic spectra	Lecture, Group discussio n	Quiz test, Formative assessment (II),

	2	SternGerlachexperiment,ElectronSpin,Vector atom model,Spin-orbit interactionPauli'sexclusion principle,Total angularmomentum in multi-electron atoms,Energylevels and transitions of helium,Alkali spectra	4	To analyse various interaction To analyse various models of spectra	PPT, Lecture, PPT, Lecture, Group discussion	
	4.	Normal Zeeman effect, Anomalous Zeeman effect, Stark effect	3	To differenti ate differet effects	PPT, Lecture,	
IV	Atomic n	nodels and Quantum Mechanics				
	1	Introduction ,Atomic spectra,Thomson's model Rutherford's nuclear atom model	2	To analyse various models of atomic spectra	PPT, Lecture,	Quiz test, Formative assessment (II & III),
	2	Bohr's model of hydrogen atom Hydrogen spectrum Ritz combination principle Correction for finite nuclear mass	4	To explain hydrogen atom model	PPT, Lecture,	
	3	Discovery of heavy hydrogen , Hydrogenic atoms Sommerfeld's model , Bohr's correspondence principle,Resonance, excitation and ionization potentials,– Measurements of critical potentials Merits and Limitations of Bohr's theory	4	To explaint the Merits and Limitatio ns of Bohr's theory	PPT, Lecture,	
	4	Schrodinger wave equation, Schrodinger time dependent wave equation Schrodinger time independent wave equation, Physical significance of the wave function	3	To Solve Schrodin ger equation	PPT, Lecture,	

V	5 Special Th	Applications of Schrodinger wave equation , Particle in a one dimensional potential well Particle in three dimensional box, Degeneracy Electrons in a metal.	2	To Solve Schrodin ger equation in different dimensio nal stages.	PPT, Lecture,	
	1	Introduction ,Frame of reference, Galilean transformations,Michelson-Morley experiment	2	To explain differed reference	Lecture, PPT	Formative assessment (II & III),
	2	Einstein's postulates,Lorentz transformations Length contraction,Time dilation	3	Estimate Lorentz transform ation for length contracti on, time dilation.	Lecture.	
	3	Relativity of simultaneity,Addition of relativistic velocities, Relativistic mass,Mass- energy relation	4	Estimate Lorentz transform ation for	Lecture, PPT	
	4	Minkowski's four dimensional space,Time continuum,General theory of relativity,Massless particle.	6	Derive four dimensio nal space,Ti me continuu m	Lecture	

Course Instructor : Dr. V. Shally and Dr. R. Krishna Priya

Head of the Department : Dr. S. Mary Delphine

Name of the Course	: Waves and Optics			
Subject code	: PC1752			
No of hours per week	No. of credits	Total No. of hours	Marks	
6	5	90	100	
Ŭ		20	100	

Objectives 1. To study the electromagnetic nature of light.

2.To enable the students to link the theory with day to day life.

СО	Upon completion of this course, students will be	PSO	CL
CO	able to:	addressed	CL
CO - 1	explain the fundamental principle of optics.	PSO - 1	U
CO - 2	determine the behavior of a ray at any optical	PSO - 6	Е
	surface .(lenses, Prisms).	150 0	Ľ
CO - 3	explain the types of waves and its characteristics.	PSO - 2	U
CO - 4	analyze the intensity variation of light due to	PSO - 3	An
	polarization, interference and diffraction.	150 5	7 111
CO - 5	distinguish Interference, diffraction and	PSO - 2	An
	polarization.	150 2	7 111
CO - 6	test the optical planeness of any optical surface.	PSO - 6	С
	measure the various optical parameters. (focal		
CO - 7	length, power, refractive index, radius of curvature,	PSO - 4	Е
	dispersive power etc) using optical components	120	-
	(prism, lenses, glass plate, grating).		
	understand the interference and diffraction from		
CO - 8	wave optics concepts and know its applications.	PSO - 1	U
	Understand polarization of light and its		÷
	applications.		

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment/ Evaluation
Ι	Geometri	cal Optics				
	1	Introduction – Refractive index and optical path- Sign convention – Refraction through lenses – Principal foci	2	To summaris e the basic concepts of optics	PPT, Lecture method	Quiz test, Formative assessment (I)
	2.	Deviation produced by a thin lens – Power	5	То	Lecture,	

	3.	of a lens - Aberrations – Spherical aberration in a lens –Methods of reducing spherical aberration (brief) – Chromatic aberration Dispersion by a prism - Refraction through a prism – Angular and chromatic dispersion – Dispersive power	4	explain the various aberratio ns in lens systems To discuss the dispersio n and refraction in a prism	PPT	
	4.	Achromatism in prism – Dispersion without deviation – Condition for achromatism of two lenses placed in contact and separated by a finite distance.	4	To explain achromat ic principles of prism	PPT, Lecture, Group discussio n	
II	Wave Op	otics			I	I
	1	Oscillations – Waves – Travelling waves – Wave front and ray – Examples of waves – Characteristics	3	To explain the different types of waves and characteri stics	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Mathematical representation – Phase velocity – Complex representation – Wave packet and band width – Group velocity	4		Lecture method	
	3.	Propagation of light waves: Introduction – Maxwell's equations – Physical significance	4	To discuss the light propagati	PPT, Lecture, Group discussio	
				on in a medium	n	

III	Interfere 1	relations – Wave equation for free space – Velocity of Electromagnetic waves – Relation between refractive index and relative permittivity.	3	explain the various paramete rs of waves To analyse	Lecture, Group discussio n Lecture, Group	Quiz test, Formative
				the principle in interferen ce	discussio n	assessment (II),
	2	Analytical treatment – Theory of interference – Fresnel's biprism – Fringes with white light	4	To explain the differed theories of interferen ce	PPT, Lecture,	
	3.	Lioyd's mirror – Interference in thin films – Interference due to reflected and transmitted light	5	To explain the interferen ce in thinfilms	PPT, Lecture, Group discussio n	
	4.	Wedge shaped thin film – Testing the planeness – Newton's rings – Determination of λ	3	To determin e the waveleng th of the light source	PPT, Lecture,	
IV	Diffractio	D n				
	1	Fraunhofer diffraction : Introduction – Single slit – Intensity distribution	2	To analyse the principle in	PPT, Lecture,	Quiz test, Formative assessment (II & III),

r	1					
				diffractio		
				n		
	2	Double slit – Comparison between interference and diffraction – Fraunhofer diffraction at N slits	4	To compare the interferen ce and diffractio	PPT, Lecture,	
	3	Plane diffraction grating – Theory – Principal maxima – Oblique incidence	4	n To explain the theoritica l principles in diffractio n grating	PPT, Lecture,	
	4	Determination of λ using grating – Dispersive power – Fresnel's diffraction	3	To determin e the dispersiv e power	PPT, Lecture,	
	5	Introduction – Huygen's Fresnel theory – Fresnel's assumptions – Rectilinear propagation of light	2	To explain the theoritica l principles of diffractio n	PPT, Lecture,	
V	Polarizat	ion		1	1	1
	1	Introduction – Polarization – Unpolarized and polarized light – Types of polarization	2	To explain the polarizati on of light	Lecture, PPT	Formative assessment (II & III),

2	Production of plane polarized light -	3	То	Lecture.	
	Polarizer and analyser – Anisotropic crystals		explain		
	– Double refraction		the		
			polarizati		
			on and		
			double		
			refraction		
			in		
			crystals		
3	Ordinary and extra ordinary ray – Positive	4	То	Lecture,	
	and negative crystals – Nicol prism – Quarter		discuss	PPT	
	and half wave plates		the half		
			and		
			quarter		
			wave		
			plates	_	
4	Production and analysis of elliptically and	6	То	Lecture	
	circularly polarized light - Analysis of		analyze		
	polarized light		the		
			different		
			polarized		
	structor · Dr S Mary Delphine and Dr A		lights		

Course Instructor

: Dr. S. Mary Delphine and Dr. Abila Jeba Queen

Head of the Department : Dr. S. Mary Delphine

Name of the Course : Solid State Physics

Subject code : PC1753

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Bonding i	n Solids		I		
	1	Bonding in solids, An over view of an atom, Condition for bonding, Octet rule and stability	4	To acquire knowledge on bonding in solids	Lecture Discussion with PPT illustration	Evaluation through short test Multiple
	2	Van der Waal's bonding, Ionic bonding, Covalent bonding	3	To understand the different kinds of bonding	Lecture discussion with PPT illustration	choice questions Formative assessment I
	3	Dipole-dipole interactions, Hydrogen bonding, Metallic bonding, Mixed bonding	4	To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion	

	4	Calculation of ionization	4	To be able to	Lecture	
	4		4	determine the	discussion	
		energies for compounds,		ionization	discussion	
		Comparison of physical				
II	Curvete	properties line Materials		energies		
11			4	-	T	G1
	1	Classification of solids,	4	То	Lecture	Short test
		Periodicity in crystalline		understand	T 11	• •
		solids, Lattice translation		the concept	Illustration	Quiz
		vectors		of crystal		
				structure.		
	2	Unit and primitive cells,	4	To acquire	Lecture	Assignment
		Bravais lattices,		knowledge	discussion	
		Symmetry operations		on unit cells		Formative
				and bravais		assessment I
				lattices		
	3	Crystal indexing, Miller	4	To be able to	Lecture	
		indices of lattice planes,		determine the	discussion	
		Directions in crystals,		miller indices		
		Atomic packing factor		of lattice		
		(APF)		planes		
	4	Density and lattice	3	To acquire	Lecture	
		constant, Other common		knowledge	Illustration	
		crystal structures		on other		
				crystal		
				structures		
III	Magnetic N	Materials	I	1		
	1	Magnetic and	3	To be able to	Lecture with	
		nonmagnetic materials,		distinguish	PPT	Short test
		Magnetic dipole compared		between	Illustration	
		with electric dipole		magnetic and		Quiz
		1		nonmagnetic		Formative
				materials		assessment
	2	Important terms in	3	To know the	Lecture with	II
		magnetism, Sources of	-	important	PPT	
		permanent magnetic		terms in	Illustration	
		moment		magnetism		
	3	Classification of magnetic	5	To know the	Lecture with	
	-	materials, Theory of	-	classical	PPT	
		diamagnetism, Classical		theory	Illustration	
		theory of para magnetism,		involved in	mastration	
		Theories of		Dia and Para		
		ferromagnetism, The		magnetism		
		Weiss exchange		magnetism		
		(molecular) field				
	4		4	To acquire	Question-	
	4	Domain theory,	4	-	-	
		Hysteresis, Hard and soft		knowledge	answer	

		magnetic material,		on ferro, ferri	session	
		Antiferromagnetism		and antiferro	56551011	
		Ferrimagnetism		magnetism	Lecture	
IV	Dielectric			magnetism	Lecture	
	1	Dielectrics, Polarizability and dielectric constant, Types of polarization	4	To acquire knowledge on Dielectrics, Polarizability and dielectric constant	Lecture Discussion	Formative assessment II
	2	Langevin's theory of polarization in polar dielectrics, Piezoelectric materials, Ferroelectrics, Antiferroelectricity	3	To acquire knowledge on piezoelectric and ferroelectric materials	Lecture Discussion	
	3	Internal or local field, Clausius Mossotti equation, Lorentz- formula, Frequency and temperature effects on polarization	4	To be able to understand the effects of Frequency and temperature on polarization	Lecture Discussion	
	4	Dielectric breakdown, Dielectric loss, Classification of insulating materials, Important insulating materials	4	To be able to classify the insulating materials	Brain storming session. Lecture Discussion	
V	Semicondu	ictors and Superconductors				
	1	Bands in solids , Elemental and compound semiconductors, Conduction in semiconductors, Band structure of semiconductors	4	To acquire knowledge on elemental and compound semiconductors	Lecture with PPT	Short test Formative assessment III
	2	Concentration of charge carriers, Mobility and conductivity in semiconductors	3	To understand the concept of mobility and conductivity	Lecture Illustratio n	
	3	Discovery of superconductivity, Superconductivity and	4	To understand the properties of superconductors		

	magnetism, Critical magnetic field, Meissner		Illustratio n	
	effect, Magnetic induction in superconductors			
4	Type I and Type II Superconductors, Isotope effect, Applications of superconductors	To understand the significance and applications of superconductors	Lecture with PPT	

Course Instructor:Dr. C. Nirmala LouisHead of the Department:Dr. S. Mary Delphine

Name of the Course	: Programming with C++
Subject code	: PC1754

Number of hours
per weekNo of creditsTotal number of
hoursMarks5475100

Objectives:

- 1. To apply C++ language to write simple programs for solving general Physics problems
- 2. To enable the students developing their own Applications using C++ and evolve as efficient software programmers

СО	Upon completion of this course, students will be able to:	PSO	CL
CO - 1	describe the principles of object oriented program. (abstraction, encapsulation, inheritance and polymorphism)	PSO - 4	С
CO - 2	apply object oriented programming techniques to solve computing problems.	PSO - 4	Ар
CO - 3	develop programs using functions and classes.(objects, array of objects, friend functions, passing and returning objects)	PSO - 4	С
CO - 4	develop programs using constructor, destructor, operator overloading and inheritance.	PSO - 4	С
CO - 5	formulate the applications of pointers and virtual functions.	PSO - 4	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Principles	of object oriented Prog	ramming			
	1	Object-orientedprogramming,paradigm,Basicconceptsofobjectorientedprogramming	3	To understand the basic concepts of object oriented pro gramming	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice
	2	Benefits of OOP, Object-oriented languages, Applications of OOP	3	To know the benefits and applications of OOP	Lecture discussion with PPT illustration	questions Formative assessment I
	3	Introduction to C++ and its applications, A simple C++ program – An example with class	3	To be able to write a simple program in C++	Lecture discussion	
	4	Structure of C++ program, Creating the source file, Compiling and Linking	3	To be able to understand the structure of C++ program	Lecture discussion	
II	Tokens, Ex	xpressions and Control	Structures			
	1	Introduction, Tokens, Keywords, Identifiers and constants	3	To understand the concept of Tokens, Keywords, Identifiers and constants	Lecture Illustration	Short test Quiz Assignment
	2	Basic data types, User defined data types, Storage classes, Derived data types, Symbolic constants	3	To acquire knowledge on basic and user defined data types	Lecture discussion	Formative assessment I
	3	Declaration of Variables, Dynamic initialization of variables, Reference variables	3	To understand the concept dynamic initialization of variables	Lecture discussion	
	4	Operators in C++, Scope resolution	3	To acquire knowledge on	Lecture	

					T11 / /	
		operator, Memory		operators	Illustration	
		management				
		operator				
III		Classes and Objects			1	
	1	The main function,	3	To acquire	Lecture	
		Function		knowledge on	with PPT	Short test
		prototyping, Call by		main function	Illustration	
		reference, Return by		and function		Quiz
		reference		prototyping		Formative
	2	Inline functions,	3	To be able to	Lecture	assessment II
		Default arguments,		understand the	with PPT	
		Constant arguments,		concept	Illustration	
		Function		functions		
		overloading, Friend				
		and virtual functions				
	3	Specifying a class,	3	To be able to	Lecture	-
	5	Defining member	5	specify a class	with PPT	
		function, A C++		specify a class	Illustration	
		program with class,			mustration	
		Making an outside				
		-				
		function inline,				
		Nesting of member				
		functions	-			
	4	Private member	3	To acquire	Question-	
		functions, Arrays		knowledge on	answer	
		within a class,		arrays within a	session	
		Memory allocation		class and		
		for objects, Static		arrays of	Lecture	
		data members, Static		objects		
		member functions,				
		Arrays of objects,				
		Friendly functions				
IV	Constructo	rs, Destructors and Op	perator over	rloading		
	1	Constructors,	3	To understand	Lecture	
		Parameterized		the concept		
		constructors,		constructors	Discussion	Formative
		Multiple			/ / /////	assessment II
		constructors in a				
		class, Constructors				
		with default				
		arguments,				
		Dynamic				
		initialization of				
1		objects			1	

	2	Course i i	2	T		
	2	Copy constructor,	3	To acquire	T (
		Dynamic		knowledge on	Lecture	
		constructors,		copy	D' '	
		Constructing two		constructor	Discussion	
		dimensional arrays,		and dynamic		
	-	Destructors		constructors		
	3	Defining Operator	3	To be able to	_	
		overloading,		understand	Lecture	
		Overloading Unary		overloading		
		operators,		operators	Discussion	
		overloading, Binary				
		operators,				
		Overloading Binary				
		operators using				
		friends				
	4	Manipulation of	3	To understand	Brain	
		strings using		the rules for	storming	
		operators, Rules for		Overloading	session.	
		overloading		operators	Lecture	
		operators			Discussion	
V	Inheritance	, Pointers and Virtual	functions			
	1	Defining derived	3	To acquire	Lecture	Short test
		classes, Single		knowledge on	with PPT	
		inheritance, Making a		inheritance		Formative
		private member				assessment III
		inheritable				
	2	Multilevel	3	To be able to	Lecture	
		inheritance, Multiple		distinguish		
		inheritance,		between	Illustration	
		Hierarchical		multilevel		
		inheritance, Hybrid		inheritance		
		inheritance.		and multiple		
				inheritance		
	3	Pointers, Pointers to	3	To acquire	Lecture	
		objects, Pointers to		knowledge on	with PPT	
		derived classes		pointers	Illustration	
	4	Virtual functions,	3	To understand	Lecture	
		Virtual constructors		the	with PPT	
		and destructors.		significance of		
				virtual		
				functions		
			I	hini and Dr. A. Loc	1	

Course Instructor

: Dr. M. Priyadharshini and Dr. A. Lesly Fathima

Head of the Department :

Dr. S. Mary Delphine